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LETTER TO THE EDITOR 

Reflecting and absorbing boundary conditions on the tail of the 
Laplacian random walk 
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t Institut fur Festkorperforschung der Kemforschungsanlage Julich, D-5170 Julich, West 
Germany 
$ Solid State Physics Laboratory, University of Groningen, Melkweg 1,9718 EP Groningen, 
The Netherlands 

Received 28 April 1986 

Abstract. We introduce a new version of the Laplacian random walk (LRW) for which the 
tail of the trajectory acts like a hard wall for incoming diffusing particles. We show how 
to implement these reflecting boundary conditions through the use of a modified discrete 
Laplace equation. From an exact enumeration on the square lattice we find that reflecting 
boundary conditions on the tail of the trajectory give rise to a denser fractal compared 
with the recently studied Laplacian random walk with absorbing boundary conditions. 

Recently we have introduced a one-parameter (7) family of indefinitely growing and 
strictly self-avoiding random walks, the so-called Laplacian random walk (LRW) 

(Lyklema and Evertsz 1986, Lyklema et al 1986). For this walk the one-step jump 
probabilities pi at site i are related to the solution of the discrete Laplace equation 
with boundary conditions @(trajectory) = 0 and @ ( r  = R,) = 1. Here r = R,  is a ( d  - 
1)-dimensional sphere centred on the origin of the walk. More precisely, the probability 
to jump to a nearest neighbour ( N N )  of the growing tip is taken to be proportional to 
the gradient of the potential @ in that direction. With @(tip) = 0 this gradient is equal 
to the potential at the N N  site. This can be generalised by choosing a power-law 
dependence with exponent 7, pi=@?. This model is essentially a linearised version 
of the stochastic model for dielectric breakdown as introduced by Niemeyer et a1 
(1984) and Pietronero and Wiesmann (1984). For 7 = 0 the LRW reduces to the 
indefinitely growing self-avoiding walk (IGSAW, Kremer and Lyklema (1985a, b)). This 
walk is a fractal, whereas the 7) = 0 limit of the dielectric breakdown problem reduces 
to a compact object, the Eden model (Pietronero and Wiesmann 1984, Richardson 1973). 

In this letter we study the influence of reflecting-tail boundary conditions on the 
asymptotic properties of the walk. Tail sites are the already occupied sites of the LRW, 
except for the growing tip. In our previous study of the LRW we solved the discrete 
Laplace equation on the square lattice 

iteratively with the above described boundary conditions. An alternative way to solve 
this equation is to consider it as a stationary random walk problem with a source at 
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infinity and sinks on the lattice sites of the trajectory (Pietronero and Wiesmann 1984b). 
For the LRW, random walkers only stick at the growing tip of the trajectory, the walkers 
which reach the tail of the trajectory disappearing without leaving a trace. This clearly 
is a process with absorbing boundary conditions and we therefore add an ‘a’ to the 
acronym (LRWa). For a physical aggregation process this may not be the appropriate 
situation. Another possibility is to choose reflecting boundary conditions ( L R W ~ )  on 
the tail of the trajectory. In this case the random walkers are bounced back to the 
previously visited site if they hit the tail. This model seems more realistic because no 
diffusing particles disappear. Clearly this choice is not available for the branching 
dielectric breakdown problem where all sites are potential growth sites. However, an 
intermediate model which allows for this possibility, and thus having only a limited 
number of growth sites, can easily be defined. To study the effect of reflecting boundary 
conditions one has to solve a slightly modified Laplace equation. The 77 = 1 version 
of this walk has been studied independently by Debierre and Turban (1986) and 
Bradley and Kung (1986). Both groups have performed Monte Carlo simulations, 
using techniques developed for the simulation of DLA (Witten and Sander 1983, Meakin 
1983). As will be discussed later, our results do not agree with theirs because of the 
finite lattice size effects of their Monte Carlo simulation. 

To study the LRWr we have to solve the following equation (Evertsz and Lyklema 
1986): 

The prime denotes that the sum only runs over N N  sites which are not occupied by 
the tail and z equals the number of N N  sites. The boundary conditions are now 
@( I = R,) = 1 and @(tip) = 0. The boundary conditions on the tail are not of importance. 
However for practical purposes one can again take @(trajectory) = 0 and omit the 
prime in equation ( 2 ) .  The only difference from the absorbing case is then the 
normalisation z, which equals the coordination number minus the number of tail sites. 
Similar to the LRWa, the jump probabilities pi in the LRWr are defined as 

/ \ - 1  

For r) > 0 we have a repulsive walk compared with the IGSAW. As for the LRWa, one 
can also define this model for negative r). Together with the LRWa (77 < 0) this will be 
discussed elsewhere (Evertsz and Lyklema 1986). 

The ‘Faraday screening’ effect is also present in equation ( 2 )  as can be seen from 
figure l (a ) .  For this example equation (2) becomes 

@ I =  t (@* + @tip) 

@* = 
(4) 

with the solution = 0. Thus the walk cannot enter the cage. It can easily be 
seen that this property holds for cages of arbitrary size and for any dimension. So the 
LRWr is also truly kinetic and strictly self-avoiding. For 77 = 0 this walk reduces to the 
IGSAW (Kremer and Lyklema 1985a, b). Note that the trajectories of both the LRWa, 

LRWr and IGSAW are the same. However, the asymptotic behaviours are not identical 
because of the different weight distributions. 

For the reflecting boundary conditions one again expects an 7 dependence of the 
asymptotic behaviour of the mean square end-to-end distance, but we expect it to 

= 
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Figure 1. Possible trajectories of the LRW. The numbering is arbitrary. See the text for 
an explanation. 

differ from that of the LRWa. Intuitively this can be understood from figure 1( b ) .  Here 
the growing tip is at the entrance of a cage of arbitrary size. If a random walker enters 
the cage through site 2 (note that sticking occurs only when the walker’s next step is 
to the tip) then the probability to reach site 1 some time later is larger for the LRWr 
than for the LRWa because in the latter case the walker can disappear in a sink. 
Therefore the LRWr will choose the inside direction (site 1) with a higher probability 
than the LRWa. This is true for cages of all sizes and in this sense it is a ‘long-range 
effect’. Thus we expect that this effect of the tail of the walk gives a higher probability 
to denser trajectories and possibly results in smaller v( q )  values as compared with the 
absorbing boundary conditions. 

To check this prediction we have performed an 18-step exact enumeration for the 
LRWr on the square lattice. The radius of the outer circle is R,=36 and the Laplace 
equation is solved by iterating equation (2). The program is vectorisable and it needed 
approximately 20 h CPU time on the Cray X-MP in Jiilich. We have calculated the 
mean square end-to-end distance ( R 2 ( N ) )  as a function of the step number and for 
25 different q values. This quantity behaves asymptotically like a power law ( R ’ ( N ) ) K  
N Z u ( ” ) .  The analysis necessary to calculate the exponent v ( q )  is the same as for the 
LRWa (Lyklema and Evertsz 1986). In figure 2 we show the effective exponent v (N ,  q )  
plotted against 1/N. The behaviour is similar to that of the LRWa. For large q values 
the effective exponent v( N )  increases with N and in the limit q + CO we find v( q )  + 1. 
For small q values the effective exponent decreases with N. The crossover occurs at 
U - 0.73 as for the LRWa but now for q - 1.5. For q = 0 we recover the IGSAW value 
v = 0.567. This behaviour suggests the possibility of a multicritical phenomenon. 
However as for the LRWa there are no competing effects in our dynamics and thus a 
multicritical point at v - 0.73 appears improbable. We thus conclude that for these 
boundary conditions also the critical index v varies continuously with the parameter 
q. The difference between the absorbing and reflecting boundary conditions for the 
whole q range is shown in figure 3 as a function of q. We indeed see the expected 
behaviour, the v ( q )  values of the LRWr are always smaller than the corresponding 
values for the LRWa. For instance, for the linear equivalent of DLA, i.e. q = 1, we find 
Y( LRWa) = 0.80 and v( LRWr) = 0.67. The fractal dimensions are 1.25 and 1.49 respec- 
tively, to be compared with D = 1.70 for DLA. This is also clear, because a branching 
structure fills space more completely and therefore it has a higher fractal dimension. 

At this point we want to discuss the results of Debierre and Turban (1986) and 
Bradley and Kung (19861, who studied the 7 = 1 case. These authors find, from a 
Monte Carlo simulation on the square lattice, v values of 0.79 (respectively 0.77), to 
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Figure 2. Plot of the effective exponent v ( N )  against TIN on the square lattice. The 1) 
values are from top to bottom: 5.0, 4.0, 3.0, 2.0, 1.75, 1.5, 1.25, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 
0.4, 0.3, 0.2, 0.1 and 0. 
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Figure 3. Plot of the estimated asymptotic U values against 7. The dots give the values 
for the LRWa, the crosses are the LRWI results. 

be compared with our result Y(LRWa)=0.80 and Y ( L R w ~ ) = O . ~ ~ .  Both groups use 
reflecting boundary conditions in their simulation and thus their results disagree 
strongly with our value 0.67. Thus the conclusion of Debierre and Turban, that they 
find good agreement with our LRWa result, is not valid. 

In an attempt to understand the discrepancy we have studied the influence of the 
finite lattice size effects. In practice, in a computer calculation one solves the discrete 
Laplace equation with boundary conditions @ = 0 on the walk and @ = 1 on a hyper- 
sphere with radius R,. We have performed a few exact enumerations of length N S  14 
with different values for R,, e.g. 11, 15, 36, 56. In figure 4 we show the results. A 
clear finite-size effect is observed. This is due to the fact that for a dimininising R,, 
the potential at growth sites close to R, increases faster than at growth sites on a larger 
distance from R,. Thus for decreasing R, one expects that stretched configurations 
have a higher probability. Indeed for the smallest R, value the effective exponents 
v( N )  extrapolate to a value larger than 0.75. The two larger R,values give indistinguish- 
able results on this scale. Thus in our calculation we have used R,= 36. This value 



Letter to the Editor 

0.7 5 

0.10 - 
I 

2 
> 
- 

L899 

' . .  . * a i  ... . : : 
# I *  * * 

0.65 I 

0 0.05 0.10 0.15 0.20 
1IN 

Figure 4. Plot of the effective exponent v( N )  against l /  N for different size lattices. The 
v ( N )  are calculated on a lattice with radius R , =  1 1 ,  15,  36, 56 (from top to bottom). 

is smaller than the R, = 50 value which was used for the LRWa enumeration. We expect 
that this will introduce a systematic error of -0.001 for the higher T values. In their 
Monte Carlo study of the LRWr (7 = 1 )  both Debierre and Turban, and Bradley and 
Kung, have used a variable R,,  namely only two times the actual length of the walk. 
As can be seen from our results, this is certainly not large enough to obtain the correct 
solution of the Laplace equation with R,  + a. The slow convergence to the asymptotic 
solution is caused by the long-range behaviour of the Green function of the Laplace 
operator (In r and l / r  for two and three dimensions respectively). Preliminary results 
of an enumeration in three dimensions ( N s  13) show the same effect. Here the result 
of Bradley and Kung is also too large. 

In summary we have shown the implications of different boundary conditions on 
the tail of the walk. This results in two different versions of the Laplacian random 
walk, one in which the tail of the trajectory acts like a hard wall ( L R W ~ )  and the other 
in which it acts like a sink (LRWa) for incoming diffusing particles. We have shown 
that the LRWr also has a continuously varying correlation length exponent v. The value 
of v ( 7 )  for the LRWr is always smaller than the corresponding value for the LRWa. 

Therefore the LRWr is a much denser object than the LRWa. 

The authors thank L Pietronero for stimulating discussions. One of us (CE) 
acknowledges the support of the Stichting voor Fundamenteel Onderzoek der Materie, 
which is financially supported by the Nederlandse organisatie voor Zuiver-Wetenschap- 
pelijk Onderzoek, and the Institut fur Festkorperforschung der Kernforschungsanlage 
Julich for its kind hospitality. 

References 

Bradley R M and Kung D 1986 Preprint 
Debierre J M and Turban L 1986 J. Phys. A: Math. Gen. 19 L131 
Evertsz C and Lyklema J W 1986 to be published 
Kremer K and Lyklema J W 1985a Phys. Rev. Lett. 54 267 
- 1985b J. Phys. A: Math. Gen. 18 1515 
Lyklema J W and Evertsz C 1986 Fractals in Physics ed L Pietronero and E T Tosatti (Amsterdam: 

Lyklema J W, Evertsz C and Pietronero L 1986 Europhys. Lett. 2 77 
North-Holland) p 87 



L900 Letter to the Editor 

Meakin P 1983 Phys. Rev. A 27 1495 
Niemeyer, L, Pietronero L and Wiesmann H J 1984 Phys. Rev. Lett. 52 1033 
Pietronero L and Wiesmann H J 1984 J. Stat. Phys. 36 881 
Richardson D 1973 Proc. Camb. Phil. Soc. 74 515 
Witten T A and Sander L M 1983 Phys. Rev. B 27 5686 


